Documentation

isstable

Determine whether filter is stable

Syntax

flag = isstable(b,a)
flag = isstable(sos)
flag = isstable(d)
flag = isstable(h)

Description

flag= isstable(b,a)returns a logical output,flag, equal totrueif the filter specified by numerator coefficients,b, and denominator coefficients,a, is a stable filter. If the poles lie on or outside the circle,isstablereturnsfalse. If the poles are inside the circle,isstablereturnstrue.

flag= isstable(sos)returnstrueif the filter specified by second order sections matrix,sos, is stable.sosis aK-by-6 matrix, where the number of sections,K, must be greater than or equal to 2. Each row ofsoscorresponds to the coefficients of a second order (biquad) filter. Theith row of thesosmatrix corresponds to[bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag= isstable(d)returnstrueif the digital filter,d, is stable. Usedesignfiltto generatedbased on frequency-response specifications.

Details for Fixed-Point Arithmetic

flag= isstable(h)returnstrueif thedfiltfilter objecthis stable.

Examples

collapse all

Design a sixth-order Butterworth highpass IIR filter using second order sections. Specify a normalized 3-dB frequency of 0.7. Determine if the filter is stable.

[z,p,k] = butter(6,0.7,'high'); SOS = zp2sos(z,p,k); flag = isstable(SOS)
flag =logical1
zplane(z,p)

Redesign the filter usingdesignfiltand check it for stability.

d = designfilt('highpassiir','DesignMethod','butter','FilterOrder',6,...'HalfPowerFrequency',0.7); dflg = isstable(d)
dflg =logical1
zplane(d)

Create a filter and determine its stability at double and single precision.

b = [1 -0.5]; a = [1 -0.999999999]; act_flag1 = isstable(b,a)
act_flag1 =logical1
act_flag2 = isstable(single(b),single(a))
act_flag2 =logical0

Introduced in R2013a