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Abstract— Motivated by indispensable requirements of large 

penetration of electric vehicles (EVs), battery swapping is an 

efficient performance to exert benefits of changing batteries 

within a short time period and charging them during off-peak 

hours. This paper proposes a strategy trying to find the best 

charging procedure of electric vehicles in an environment toward 

battery swapping stations (BSSs). The goal of the strategy is to 

minimize the charging cost as well as to reduce energy loss. 

Voltage deviation of buses, power flow of network branches, and 

maximum power consumption of BSSs are considered as 

constraints of this optimization problem. In order to solve the 

issue, a population-based evolutionary approach, which is a 

modified hybrid form of genetic algorithm (GA) and particle 

swarm optimization (PSO) algorithm, is employed. The strategy 

is implemented on IEEE 33-bus distribution network test system 

and numerical results are illustrated.  
Keywords—Electric vehicle, battery swapping station, charging 

strategy, modified GA-PSO algorithm. 

 

NOMENCLATURE 

 

T  Number of time slots in charging period  

  Time span of each time slot 

Nb  Total number of buses in the network 

nb  Total Number of Branches in the network 

N  Total number of BSSs 
 

m  Number of EVs in each group   

D  Total Number of EVs group 
 

itW  Decision variables vector at iteration it  

,n itx  Charging priority of group n at iteration it  

,n ity  Charging location of group n at iteration it  

z  Objective function of the problem 
 

Mz  Modified objective function of the problem 
 

 

,i tPVC  Penalty of voltage constraint of bus i at time slot t  

bPAPC  Penalty of apparent power constraint of branch 

b among all time slots 
 

TPVC  Total penalty of voltage constraint  

TPAPC Total penalty of apparent power constraint 

,V S   Penalty coefficients of voltage and apparent power 

constraints, respectively 

tPri  Electricity Price at time slot t  

bR  Resistance of branch b  

,b tI  Current of branch b at time slot t  

,i tV  Voltage magnitude of bus i at time slot t  

Max

iV  Maximum permissible voltage magnitude of bus i   

Min

iV  Minimum permissible voltage magnitude of bus i  

tP  Power demand of BSSs and power loss at time slot t  

Ch

tP  Power demand of BSSs at time slot t  

BSS

,k tP  Power demand of BSS k at time slot t  

Loss

tP  Power loss of the system at time slot t  

Max

tP  Regulated maximum total power consumption of the 

system at time slot t  
Load

tP  Residential power consumption at time slot t  

Rem

tP  Remained Power available for EVs Charging at time 

slot t  

,b tS  Apparent power flowing through branch b at time 

slot t  

bS  Maximum apparent power flowing through branch 

b among all time slots 
Max

bS  Maximum permissible apparent power flowing 

through branch b  
BSS

kS  Apparent power flowing through the branch ending 

with the bus connected to BSS k  among all time 

slots 
BSS,Max

kS  Regulated maximum apparent power flowing through 

the branch ending with the BSS k   
 

I. INTRODUCTION 

With the rapid growth of population and use of fossil fuels 
in the last decades, the global society has faced to problems 
including air pollution, greenhouse effect, fuel price increase, 
and depletion of fossil fuel resources. In order to mitigate such 
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issues, deploying electric vehicles together with renewable 
generations (RGs) in large scales has been considered as a 
promising solution  [1]. In some cases, the promotion of 
governments has caused the rapid growth of EVs just as it 
came to pass in China as a specimen [2]. Along with the 
presence of vehicles run by direct connection to the electrical 
network while moving, like electric trains and some electric 
buses, several technologies have been defined so far to provide 
the energy of battery electric vehicles (BEVs) and plug-in 
hybrid electric vehicles (PHEVs) such as slow charging, fast 
charging, battery swapping, and wireless charging [3, 4]. 

According to the joint nodes of transportation and power 
system created by EVs and charging stations [4], the two 
systems can interact deeply on each other. Despite the 
advantages of EVs, whether in terms of economic or 
environmental aspects, large utilization of these vehicles with 
uncertainty of charging behaviors can cause power system to 
operate under unwanted inefficient circumstances [5, 6]. The 
operation of a power system can face problems in some of its 
factors such as loading and voltage profile [5], difference 
between peak and off-peak loads [6], loading amount of 
network branches, and energy loss (caused by current flowing 
through branches) without an efficient scheduling of EVs 
connections to the distribution network. It is possible even in 
some conditions that these problems threaten the reliability and 
security of the system. On the other hand, constraints of the 
power system can interfere with the comfort of vehicle drivers 
[6]. Thus, there should be a coherent management for this type 
of transportation fleet to not only keep away from such 
problems but also utilize the storage feature and dispersed 
removable loads property of EVs [7] with the presence of 
smart grid infrastructure and thereby, enhance the reliability 
[1], flexibility and power quality of the electrical system. 

In order to attract people to choose EVs and make the 
penetration extent of EVs larger, considerable efforts have 
been made by researchers to solve the difficulties existing on 
the way. To reduce the charging time of EVs’ batteries 
approaching to refueling time duration of gasoline-based 
vehicles (e.g. about 90 seconds for Tesla battery swapping 
service [4]) and to mitigate the charging control procedures’ 
burden on the drivers along with preserving the power 
distribution system work properly, battery swapping scenario 
has been defined [8]. In fact, an EV driver will receive a fully-
charged battery instead of his/her flat battery by paying the 
different state of charge (SoC) of the two batteries in a BSS. 
Flat batteries are gathered in the BSSs and are charged at a 
time considered to be suitable. Thus, BSSs can participate in 
the wholesale electrical market to buy cheaper energy or can 
manage to buy it from renewable RGs. They can even provide 
profitable ancillary services, on the other hand [4].  So, if the 
regulations of standardization and commercialization 
associated with this type of stations will be well established 
and also the optimal charging procedures of the batteries will 
be introduced, this charging strategy of EVs can be promising. 

In recent years, considerable endeavors have been focused 
on the battery swapping strategy. A comparison between the 
planning of two types of stations based on life cycle cost was 
done by [8] in which there was shown that the BSS is more 
appropriate for public transportation system than rapid 

charging stations. In [9], random behavior of a BSS was taken 
into account and thereby, a stochastic modeling based on 
Monte Carlo simulation is deployed to predict the consumption 
of the BSS for alleviating the impact of charging behavior. A 
business modeling of day-ahead charging scheduling 
considering the uncertain demand for battery swapping along 
with the modeling of electricity price uncertainty was 
accomplished by [10]. Optimized operation of EVs and BSSs 
under uncoordinated charging pattern in a relatively smaller 
area like a microgrid is discussed in [11]. Reliability 
assessment of distribution system with BSSs is taken into 
account by [7, 12]; The behavior of EV users is modeled in 
these studies and the results show that the reliability 
performance of the system can be enhanced by the presence of 
BSSs. 

In this paper, an optimal charging of EVs under the battery 
swapping procedure in BSSs are designed. Charging location 
and priority of the EVs are considered as decision variables of 
the optimization problem. A modified hybrid GA-PSO 
algorithm is employed to update the variables in the solution 
space in order to approach to the best solution. A 
mathematical algorithm was defined using the variables 
produced by the evolutionary algorithm in order to find the 
deterministic least possible cost of charging along with energy 
loss. Limitations of voltage fluctuations, bounds of apparent 
power flowing within the branches of the electrical network, 
and the maximum permissible power consumption of each 
BSS are considered as the constraints of the optimization 
problem. It is assumed that the infrastructure is implemented 
within a smart grid. So, the variable pricing scheme of 
electricity, a function of the power consumption of the whole 
system, is considered. The backward-forward power flow 
(BFPF) is deployed and the strategy is implemented on IEEE 
33-bus radial test system. 

II. PROBLEM DEFINITION 

Due to the energy absorbed by BSSs, there should be a 
coherent charging schedule of batteries in order not to face to 
unsuitable operation of the power system from technical and 
economical points of view which can be occurred by 
stochastic charging procedures of large amounts of EVs. We 
supposed that the distribution system divided into some 
smaller area in which the BSSs are located and each area is 
controlled by an aggregator. The extent of each area is not as 
large as to one which make an EV user drive much from one 
place to another. The aggregator is also responsible for the 
energy loss of its area. So, the goal of the problem is to find 
the least possible charging and energy loss by considering not 
to disturb the stability and security of the system’s operation. 
It is considered that the reactive power requirements of each 
BSS provided by itself. In fact, the BSSs don’t absorb reactive 
power from the grid. It is supposed that the system operates in 
a smart grid infrastructure with the potential of using internet 
of things (IoT). Each time an EV requests the aggregator to 
determine a BSS for battery swapping, it is possible to the 
aggregator to specify the location due to SoC of that vehicle 
along with the scheduling program run before. Furthermore, 
the distribution system has the ability to change the price of 
electricity in relation to the power consumed. All of these can 
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be fulfilled by IoT technology in a smart grid infrastructure of 
the distribution system. It is supposed also, for each particular 
type of batteries, the cost of battery swapping will be constant 
for any level of SoC. 

A. Decision Variables 

To find the optimal charging schedule of EVs, priority and 
location of charging are considered as decision variables. By 
changing the two type of variables, we search the best possible 
work point of the problem. 

B. Objective Function 

As stated before, the objective of the optimization problem 
comprises the minimization of charging cost of the whole EVs 
will be charged in a particular area and the energy loss of the 
considered area within a day and night. So, we have the 
following equation: 

1

min . .
T

t t

t

z P Pri


 
  

 
                                              (1) 

where in: 

Ch Loss

t t tP P P               (2) 

Ch BSS

,

1

N

t k t

k

P P


                           (3) 

Loss 2

,

1

. | |
nb

t b b t

b

P R I


                           (4) 

C. Constraints 

The constraints of the problem include the operational 
stability of the bus voltages, the limitation for apparent power 
flowing within each branches, and the maximum permissible 
power consumption for each BSS (in order to control the 
power consumption of them); The latter one allows us to 
control the number of EVs coming to each BSS of the area for 
battery swapping; This action is done due to the fact that the 
BSSs are planned to be distributed throughout the area in 
order to receive almost the same customers, and by this 
constraint, we actually want to simulate the non-electric 
constraints to an electric constraint. The constraints are 
formulated as follows: 
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 Max 1,2,...,b bS S b nb            (6a) 

 ,1 ,2 ,max , ,...,b b b b TS S S S                  (6b) 

BSS BSS,Max

k kS S              (7) 

The third constraint (7) effects just as the second one (6a) 
does. As the constraints aren’t applied on the decision 
variables of the optimization problem, they are presented as 

penalty functions in the objective function of the problem. So 
the two following ( TPVC and TPAPC ) are added to the 

equation (1): 
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The objective function is modified as: 

M

1

min ( . . ) . .
T

t t V S

t

z P Pri TPVC TPAPC  
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The two penalty coefficients are assumed to be too big values 

like 2010 . 

III. EVOLUTIONARY ALGORITHM 

Since some parts of the program can’t be defined exactly 
before happening and they are required to be predicted such 
as residential load curve and the SoC of EVs’ batteries, it is 
acceptable to solve this large-size non-convex and nonlinear 
optimization problem by using evolutionary algorithms to 
find the best answer in a solution set. The population-based 
evolutionary algorithm used to update the values of decision 
variables, is a modified hybrid version of the two algorithms 
GA and PSO [6]. Indeed, we use the evolutionary algorithm 
to find the best priorities and locations for EVs in which their 
batteries to be swapped. Both of the two types of decision 
variables are extent to the number of EV groups in the area. 
Therefore, the decision variables vector generated by 

iteration it is defined by: 

 

1, 2, , 1, 2, ,, ,..., , , ,...,it it it D it it it D itW x x x y y y          (13)

  

which the first D variables denote to the charging priority of 
the EV groups and the second D ones are the charging 
locations (location of BSSs) of the EV groups. 

IV. ELECTRIC VEHICLE CHARGING RULE 

Each time the decision variables are updated, the 
information of the variables along with the SoC of EV groups 
will be used by the electric vehicle charging rule (EVCR) 
program to determine the charging time period of each EV 
group among the whole time slots together with the values of 
power consumption of each BSS. Indeed, the program 
deterministically define the least possible cost of charging 
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period for each EV group according to SoC, charging priority 
and location dedicated for that group. It is noticeable that no 
interruption will occur within the charging period of each 
group with this day-ahead charging strategy. For each time the 
program raises the value of power consumption in a specific 
time slot, the whole power consumed until then is checked in 
order to raise a step in price value if the total power increased 
up to a predefined value. In fact, the program react smartly to 
the rise of electricity price in a smart distribution network. It is 
necessary to mention that after the program is run, it should be 
checked that whether the total batteries were fully charged or 
not; if the answer is no, there was not enough space for 
charging the whole batteries and we should change a parameter 
or parameters to solve the problem; the parameters can be the 
number of EVs dedicated for each group (and therefore 
followed by the number of groups –in order to hold the number 
of total EVs constant), the total number of EVs to be charged, 
maximum permissible value of power consumption for the 
whole system, and so on. The maximum permissible amount of 
active power in each time slot that the BSSs can consume is 
defined as: 

Rem Max Load

t t tP P P             (14) 

Ch Rem

t tP P             (15) 

V. POWER FLOW 

Instead of regulating the set point of generators across a 
network with constant loads in a conventional optimal power 
flow (OPF) problem, we regulate the value of loads (i.e. the 
power consumption of BSSs) by dispatching the load flow of 
EVs charging to gain the optimal set point of network loading, 
instead. Indeed, it can be considered that each BSS has a 
constant load and connects to a source of power (generator) 
simultaneously, which changes the total power consumption of 
BSS-generator set. Thereby, we are actually solving an OPF or 
optimal load flow problem as a whole sight. 

 Due to the fact that we use a radial distribution network, 
we cannot use conventional power flow solving methods like 
Newton-Raphson according to its complexity in these 
networks. Likewise, instead of using the power flow equations, 
we use backward-forward power flow (BFPF) method [13] 
which is suitable for radial networks. Every time the decision 
variables are updated, followed by defining power 
consumption values of BSSs by EVCR, we acquire the values 
of bus voltages and branch currents of the network by using 
BFPF which can also specify the value of power loss and the 
total active and reactive power obtained from the substation (or 
slack bus). With climaxing to this point, we are ready to 
evaluate the objective function and constraints which were 
defined before, then comparing the result with the best one 
among all previous results in the evolutionary algorithm to 
determine and hold the best answer until now. 

VI. CASE STUDY 

In order to validate the proposed strategy, the charging 
schedule algorithm was implemented on a case study which 
we introduce its details in the following parts: 

A. Final Assumptions and Settings 

Some final assumptions and settings used to accommodate 
the case study to our problem are: 

1) It is assumed that the batteries of EVs will charge in 
the form of groups, i.e. the unit of charging loads is a group 
of batteries not a single battery in order to predict the amount 
of energy for each unit more accurate. Indeed, despite the 
strategy can be run by a single EV as a unit of load, but the 
prediction process needs field study and probabilistic analysis 
in this case. Likewise, it is supposed that the models of EVs 
in each group are same to each other.  

2) Although it doesn’t make difference to solve the 
problem with different numbers and types of EVs through 
EV groups, it is presumed that all groups have the same 
number and type of EVs for simplification. The number of 
EVs in each group (m) was considered 10 with the total 
number of EVs 1000 (so we have 100 groups) for the total 
charging period within a day and night in the region. EV-
Tesla Model S (released in 2014) [14] was chosen as the type 
of EVs. Capacity of batteries is 85 kWh with charge 
efficiency of 92%. We suppose that BSS operators won’t 
accept battery swapping for batteries whose SoC values are 
less than 15% and up to 70%. The first one refers to the low 
operating quality of voltage which hinder the driver to ride 
any longer and the latter refers to adhere to the battery life 
duration. 

3) There are two kinds of chargers: 10 kW (slow 
charging) and 20 kW (fast charging). At the beginning of the 
charging process of each group, it is assumed to use slow 
charging pattern for all EVs. So, the total power consumption 
of each group will be 10m kWh. As soon as each EV in an 
EV group is fully charged, another EV in that group, which is 
under slow charging pattern and is not charged fully yet, will 
has its charging process changed from slow to fast charging 
pattern. Thereby a group consumes 10m kWh in almost all 
moments of its charging period [6]. 

4) The price of battery swapping is considered to be the 
same for each amount of SoC each EV has. By this procedure 
the batteries intended to be swapped will tend to its lower 
amounts of SoC which is more beneficial for the battery life. 
Furthermore, the prediction process of SoC will be more 
accurate. To generate the amounts of time slots that the EV 
groups need to be fully charged, we use beta distribution 
function with the maximum and minimum of 70 and 15 
percent (refers to the possible SoC of batteries in time of 
swapping), respectively with the maximum occurrence 
possibility of 25.76 percent. 

5) The active power demand curve of residential loads 
that is used in this paper is depicted in Fig. 1 [6]. 

6) We use spot pricing scheme exploited from New York 
Independent System Operator (NYISO) that is based on July 
16, 2013 [18]. It is demonstrated in Fig. 2. 

7) It is explicit to be better to charge the batteries 
gathered in each BSS during off-peak time periods (e.g. night 
time) for the usual least amount of residential power demand, 
therefore low electricity price and depleted capacity of 
network branches; Nevertheless, it should be considered that 
by charging batteries in these periods, the valleys of load 
curve will be filling gradually, triggering probably more 
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costly generators to operate and thus the energy price will 
rise. 

 

Fig. 1.  Total Daily residential Power Consumption of the System 

 

 
 

Fig. 2.  Fundamental Electricity price of the system 

 

 

 
Fig. 3.  Single diagram of IEEE 33-bus test system Configurations 

 
 
In order to simulate the practical condition and impede 

creating any new peak load, it is assumed that the Price will 

almost change by changing the amount of power. In this case, 
the price will rise for 6.5$ when the active power ascends 
more than 0.5 MW. Thus, we exert a real-time pricing for 
charging EVs. In practice, the electrical distribution agencies 
may want to follow another procedure to raise the price or 
even the aggregator of BSSs may participate in wholesale 
market, at all. 

B. Electrical Distribution Network 

A modified form of IEEE 33-bus test system is considered 
as the case study of distribution system. The configuration of 
the network is illustrated in Fig. 3 [15-17]. In order to consider 
EVs used in practical applications with real battery capacities, 
we needs up-to-date information of distribution system. 
Therefore, we assumed that the active power demand of the 
whole system is raised from 3.715 MW to 11.1 MW (So the 
ratio is 11.1/3.715). Likewise, the reactive power of the whole 
system, active and reactive of each residential loads is raised 
with the same ratio. As well, the branches of the network is 
supposed to have been augmented which means that the 
parameters r and x of the branches are reduced. The ratio of 
this reduction is supposed to be 1.5. The voltage level of the 
system is raised to 20 kV and since by this voltage increase and 
practical conditions, we supposed that the thermal capacities of 
the branches are enhanced which are presented in Appendix 
(Table A1). The first bus of the network is considered as slack 
bus and we determined its voltage value to be constant at 1.03 
per unit. Maximum permissible voltage deviation of buses is 

assumed to be 0.5 per unit (so Max

iV and Min

iV  stated in 

equation (8) are 1.05 and 0.95 per unit, respectively). It is 
supposed that the BSSs are located in Buses 18, 22, 25, and 33 
[18]. Due to the whole number of EVs to be Charged and the 
share of each BSS therefrom (if the whole number of EVs 
distributed uniformly among BSSs), we regulate the maximum 
permissible power consumption for each BSS (the value of 

BSS,Max

kS  in inequality (7) which is assumed to be equal for all 

BSSs), 2 MW as demonstrated in Table A1. Due to the peak 
active power of residential load curve (11.1 MW), We assumed 

the Max

tP  to be 10.8 MW. This value can be regulated by 

independent system operator (ISO) of the distribution system 
due to the system capabilities or by the aggregator of the BSSs 
in the area due to their goals and field studies. However, the 
program can admit the various amounts of maximum power --
even more than the peak residential load-- and similarly, the 
various amounts of EV numbers to be charged or the battery 
capacities of the EVs, as well. 

C. Results and Discussions 

The results and outputs of the charging method is presented 
in this section. 

To evaluate the performance of the evolutionary 
algorithm used in this paper, the program run for 20 times 
in which the number of total iterations in each time was 
100. statistic results including objective function and timing 
is presented in Table I. The computational timings were 
measured on Intel® Core™ i7-4790 CPU at 3.6 GHz, 8-
GB RAM, and 64-bit operating system. 
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TABLE I. Statistic performance of the applied evolutionary algorithm  

 
 Objective function 

($) 

Timing 

(minutes) Best 7067 13.94 

Worst 7371 14.57 

Median 7174.5 14.21 

Mean 7231.6 14.25 

Standard Deviation 107.3 0.18 

 

The time slot duration is considered 15 minutes. So, we 
have 96 time slots for each day and night. The whole active 
power consumption of the system, equivalent to the active 
power extracted from the substation (bus numbered 1), is 
illustrated in Fig. 4. The figure depicts the consumption with 
or without the EV charging process. It shows that this 
charging strategy can makes the whole load curve smoother, 
make the cost of EV charging at its lowest value according to 
its optimal siting through off-peak period. As well, it fills the 
valley of load curve without huge spike in power changes of 
loading. Nevertheless, the small fluctuations at hedge of the 
curve get more frequently that may disturb the governors’ 
performance of generators. Due to the fact that the BSSs can 
act even as storages, this phenomenon can be solved by load 
levelling characteristic of storage devices which can provide 
load-frequency control (LFC) in each level we would like. 

To demonstrate the amount of EVs charging power 
consumption, Fig. 5 is provided. The figure shows that the 
whole charging period is not including all of the time slots 
within a day and night which can be referred to the maximum 
permissible loading we regulate or the electricity price. Total 
Apparent Power Consumption of the system which includes 
active power demand of the BSSs along with active and 
reactive power demand of the residential loads in the system 
is expressed in Fig. 6.  

Power consumption values of the BSSs within the whole 
time slots are shown in figures numbered 7 to 10 
respectively. Due to the third constraint stated in (7), the 
consumption value of each BSS is limited to its maximum 
value (2 MW). Optimal value of objective function which 
comprises EVs charging cost and energy loss cost of the 
system, becomes 7233$ which the shares of charging cost 
and energy loss are 6429.5$ and 803.5$, respectively. The 
energy loss contains the total loss of energy for the flowing 
of current caused by not only the charging process but also 
the residential demand of the system during the whole time 
slots of day and night. The energy loss in relation to the total 
energy demanded by the whole system becomes 3.1%. 

 Voltage profile of the system in format of maximum and 
minimum value of each of the bus voltages among time slots 
of the day, depicts in Fig. 11. The minimum magnitude of 
the voltage among all buses in whole time slots was 
recorded 0.962 per unit. The maximum loading of each 
branch (maximum apparent power flowing through the 
branch) along with the maximum permissible loading of the 
branch is illustrated in Fig. 12. Eventually, the dynamic 
electricity pricing within the whole time slots is depicted in 
Fig. 13. The fundamental pricing is also illustrated to 
simplify the comparative sight. 

 

Fig. 4  Active Power Consumption of the System 

with & without EVs Charging 
 

 

Fig.  5  Total Power Demand of BSSs 
 

 

Fig. 6  Apparent Power Demand of the whole System [MVA] 
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Fig. 7  Power Demand of BSS NO. 1 (Located in Bus 18) 

 
Fig. 8  Power Demand of BSS NO. 2 (Located in Bus 22) 

 
Fig. 9  Power Demand of BSS NO. 3 (Located in Bus 25) 

 
Fig. 10  Power Demand of BSS NO. 4 (Located in Bus 33) 

 

 
Fig. 11  Maximum and Minimum Voltage Profile 

 of Buses among All Time Slots 

 

 
Fig. 12  Maximum permissible and Maximum Happened  Flowing  

apparent power Through Branches among All Time Slots 

 

 
Fig. 13  Fundamental and Dynamic electricity Price 
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VII. CONCLUSION 

This paper presents an optimal charging schedule of BSSs 
based on the charging cost of EVs and energy loss of the 
distribution system considering network security. In order to 
approach the real conditions, we have simulated a dynamic 
electricity pricing related to power consumption of the EVs 
charging process. An evolutionary algorithm which is a 
modified hybrid form of GA and PSO, was exploited to find 
the best location and priority of EVs. A deterministic 
mathematical program has been achieved to find the least 
possible EVs charging cost for every decision variables vector 
of the optimization problem. In various cases, the results show 
that the aggregator of the area which is responsible for EVs 
charging operation and energy loss of the system, can change 
parameters in order to gain the optimal operation of the system 
in different conditions. The required power of the system is 
just provided through the substation. With presence of 
distributed generations and particularly renewable types of 
them, the performance of the system with BSSs is envisioned 
promising especially with the ability of BSSs to participate in 
the energy storing processes which is necessary for the local 
energy-load grids, microgrids, within a smart grid. This idea 
can be strengthened by applying the use of IoT along with the 
smart grid infrastructure which can facilitate the connectivity, 
mobility, gathering and storing of information, and so on.  

 

APPENDIX 

TABLE A1. Thermal Capacity of Network Branches  
 

Sending 

Bus 

Receiving 

bus 

Branch 

NO. 

Thermal Capacity 

(MVA) 

1 2 1 14 

2 3 2 14 

3 4 3 10.5 

4 5 4 10.5 

5 6 5 10.5 

17 18 17 2 

21 22 21 2 

24 25 24 2 

32 33 32 2 

Other Branches 7 
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