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Abstract—Recent developments in high resolution MRI scan-
ning of the human spine are providing increasing opportunities
for the development of accurate automated approaches for
pathoanatomical assessment of intervertebral discs and verte-
brae. We are developing a fully automated 3D segmentation
approach for MRI scans of the human spine based on statistical
shape analysis and template matching of grey level intensity
profiles. The algorithm reported in the present study was vali-
dated on a dataset of high resolution volumetric scans of lower
thoracic and lumbar spine obtained on a 3T scanner using the
relatively new 3D SPACE (T2-weighted) pulse sequence, and on
a dataset of axial T1-weighted scans of lumbar spine obtained on
a 1.5T system. A 3D spine curve is initially extracted and used
to position the statistical shape models for final segmentation.
Initial validating experiments show promising results on both
MRI datasets.

Index Terms—Spine Imaging, Image Segmentation, MRI, Sta-
tistical Shape Models

I. INTRODUCTION

Recently MR pulse sequences such as 3D Sampling Perfec-

tion with Application optimised Contrasts using different flip

angle Evolution (SPACE) have been developed that provide

detailed high-quality 3D images of the human spine with spa-

tial resolutions comparable to CT [1]. Given the superior soft

tissue contrast offered by MRI and the ongoing improvements

of new pulse sequences for high resolution imaging of the

vertebral column, MRI will likely play an increasing role in

the radiological assessment of acute and chronic disorders of

the human vertebral column.

The aim of our research is to develop an automated sys-

tem for accurate detection, segmentation and morphological

assessment of the vertebral bodies (VBs) and intervertebral

discs (IVDs) to facilitate the diagnosis and treatment planning

of common pathological conditions of the spine. Potentially,

an automated segmentation approach offers many benefits over

time- and expertise-intensive manual segmentation procedures

particularly for analyses of large, high-resolution volumetric

imaging studies within both clinical and applied research

environments. The challenges facing the development of an

automated analysis system include intrinsic anatomical fac-

tors such as the accurate identification of the geometrically

complex bony vertebral elements, the non-linear alignment and

intimate interlocking of various bony and soft-tissue structures,

intra- and inter-patient variations within and across the local

regions and entire extent of the vertebral column as well as

MR artifacts such as signal inhomogeneities, low signal-to-

noise (SNR) or contrast-to-noise (CNR) ratio. Furthermore,

advanced image processing and segmentation techniques are

required to provide robust and precise analysis for MRI images

of various contrast, different quality of acquisition and spatial

resolution.

II. PREVIOUS WORK

CT provides high contrast resolution between the bony

vertebrae and surrounding soft tissues, making it possible to

exploit the image gradient information or other edge detection-

based algorithms for segmentation procedures [2]. While CT

images are useful to assess the vertebrae [3] their use in

systems for computer-aided diagnosis of IVD pathologies is

however limited by relatively reduced visualisation of soft

tissues compared with MRI. The capacity for MRI to provide

high contrast images of the IVDs along with good visualisation

of the bony vertebrae is an attractive feature of this imaging

modality, however most current studies are acquired with

anisotropic resolution making it challenging for volumetric

segmentation in 3D. Hence previous segmentation approaches

(both for vertebrae and IVDs) have been based on 2D analysis,

typically based on images obtained in the sagittal plane. Hough

transform or edge detectors figure among the most common

methods of IVD detection [4]. These techniques can provide

good initial information about the location of the vertebrae

and the IVDs in the spine [5] but are usually insufficient to

provide final segmentation results. In [6], the results of an edge

detection technique (opening by reconstruction operator) are

further refined using a trained classifier based on statistical

texture features. Open active contours (snakes) are used in

[5] to detect landmarks at disc approximate edges and the

landmarks are used to drive a 2D segmentation of the cervical

IVDs by active shape model in the central sagittal cross-

section. The 2D segmentation process is then spread in both

sagittal directions and the final 3D volume is obtained by

combining the segmentations from all slices. An analogy to

brain segmentation is presented by [7] who segment the IVDs
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of the lumbar spine in the central sagittal cross-section by a

combination of a fuzzy c-means segmentation algorithm, to

reduce the partial volume effects, and a prior knowledge from

a probabilistic disc atlas.

Adapted edge detecting techniques have also been used

to segment the VBs from MRI, such as successive ellipses

fitting to horizontal cross-sections [8] which are then com-

bined to generate a final 3D volume. Authors in [9] segment

successive 2D sagittal slices using iterative normalised cuts.

A 3D segmentation procedure has been proposed by [10]

using statistical shape models of VBs and the spinal cord.

The shape is deformed using contours extracted by the Canny

edge detector together with vectors of geometric attributes.

All of the above mentioned techniques (with the exception

of [10]) rely on two-dimensional image data, are often specific

to particular MRI contrast or need some manual input from the

user. However, with recent MRI techniques making acquisition

of high resolution data possible, there is a great potential for

analysing the anatomical structures in further details utilising

all the 3D information provided. Moreover, a fully automated

approach would enable analysis of larger datasets that would

provide results for robust statistical testing.

In our research, we develop a fully automatic 3D segmen-

tation algorithm for both the VBs and IVDs of all spine

areas (lumbar, thoracic, cervical) that can be applied to MRI

images of different contrast and spatial resolution. The seg-

mentation method is based on 3D statistical shape model

(SSM) analysis and grey level profile (GLP) registration.

The automatic procedure is initialised by object-recognition

analysis of the sagittal cross-sections followed by an automatic

search for the 3D spine curve. Centre points of the VBs

and IVDs are determined from an intensity profile along this

spine curve. We demonstrate the potential of this approach on

datasets comprising scans of the lumbar and thoracic areas

with different slice thickness and MRI contrast.

III. METHOD

A. Image Database and Pre-Processing

Three datasets (Table I) were used in this study to validate

our segmentation algorithm. The first dataset consists of T1-

weighted (T1w) axial scans of the lumbar spine of six healthy

subjects with relatively high slice thickness (5-6mm), in-

plane resolution 0.3-0.4mm (parameters common in clinical

practise). The second and third dataset contain high resolution

T2-weighted (T2w) 3D SPACE scans of lumbar (dataset II)

and lower-thoracic (dataset III) areas from six healthy subjects.

The 3D SPACE pulse sequence at 3T has shown a good

potential for clinical assessment and diagnosis [1], [11] and

has the advantage of 3D volumetric acquisition providing high-

resolution images with superior spatial resolution and level

of details (axial slice thickness 1-1.2mm, in-plane resolution

0.34x0.34mm). Example axial and sagittal slices of images

from the three datasets are shown in Fig. 1.

To minimise the noise while preserving edge information,

images were smoothed by gradient anisotropic diffusion (15

iterations with time step 0.01 and conductivity 0.25).

TABLE I
IMAGE DATASETS

(L - LUMBAR AREA, T - THORACIC AREA)

# # # Slice Slice
Modality Area Scans VBs IVDs Resolution Thickness

I T1w L 6 11 11 0.3-0.4mm 5-6mm

II T2w L 6 30 29 0.34mm 1-1.2mm

III T2w T 6 27 26 0.34mm 1-1.2mm

Fig. 1. Example Axial and Sagittal Cross-sections. One subject from each
dataset is presented in each column (see Table I - lumbar T1w on the left,
lumbar T2w in the middle and thoracic T2w on the right). Partial voluming
effect can be observed for images of dataset I due to the larger slice thickness
(bottom-left).

Each database was manually segmented providing a set of

11 lumbar VBs (L1-L5) and 11 lumbar IVDs (T12L1-L4L5)

for the first dataset of T1w images, a set of 30 lumbar VBs

and 29 lumbar IVDs (second dataset) and 27 thoracic (T8-

T12) VBs and 26 thoracic IVDs (T7T8-T11T12) for the third

dataset. We used the manually segmented volumes to create 6

three-dimensional SSMs (one VB and IVD per dataset). The

procedure for generating SSMs is described in the next section.

B. Model Creation and Optimisation

Each manually segmented volume (VBs, IVDs) was trans-

formed into a triangular mesh by applying the marching cubes

algorithm and parameterised using SPHARM [12]. Subse-

quently, the optimization procedure presented in [13] was used

to generate the SSM.

As a result of the marching cubes algorithm, each shape

is represented as a triangular mesh with a variable number

of vertices and facets. The key problem to create a 3D SSM

is to find a corresponding representation of all the meshes,

ie. with the same number of points that spatially correspond

to each other across the database. Supposing we have such a

database of corresponding meshes xi, i = 1, . . . , N , we can

then Procrustes align them and define a point distribution for

each of the vertices. Their mean positions x̄ (thus introducing
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Fig. 2. Segmentation Algorithm Pipeline. The segmentation procedure consists of several step. After the pre-processing, the spine location and approximate
positions of VBs and IVDs are found. The statistical mean shape is placed into the found locations and refined by grey level profile matching.

a ’mean shape’) and covariance matrix C can be computed as

described in Eq. 1:

x̄ =
1

N

N∑

i=1

xi, C =
1

N − 1

N∑

i=1

(xi − x̄)(xi − x̄)T (1)

Each eigenvector of the covariance matrix describes a mode

of variation of the dataset and the corresponding eigen-

value λi, i = 1, . . . , N its importance. By taking the largest

n eigenvalues (where n ≤ N and the eigenvalues are

sorted in descending order in absolute value), a ratio of

(
∑n

i=1 |λi|/
∑N

i=1 |λi|) of the total variance can be captured

by using the subset of n modes of variation while reducing

the computational cost when using all N modes. New shapes

x can be generated by weighting each mode of variation and

adding it to the mean shape (Eq. 2):

x = x̄+ Pb, (2)

where P is the matrix of first n orthonormal modes of

variation (eigenvectors of C) and b = (b1, . . . , bn) is the vector

of weights that influences each mode of variation [14]. We

define an allowed shape as a shape whose mode parameters

(weights b) lie within 3 standard deviations of each mode. The

allowed shapes are then used for the segmentation.

For the purpose of finding point-wise corresponding meshes,

an inhouse implementation of the optimisation algorithm [13]

is used. The process of finding point-wise correspondences is

formulated as an otimisation problem of finding the best shape

re-parametrisation across the dataset. Initially, all shapes are

mapped to a unit sphere using the explicit parametric repre-

sentation of [12]. The sphere representation is more tractable

to re-parametrisation by moving, deleting, interpolating and

resampling the points on its surface [15]. Further improvement

in speed is suggested in [13] by unfolding the sphere into

a 2D square via mapping to octahedron and by performing

these operations in the plane. The optimisation criteria is

inspired from the theory of signal encoding. A SSM is thought

as a shape (mesh) with modes of variation of each point.

Every shape in the database is then described (encoded) as

a weighted sum of these modes of variation (as in Eq. 2). The

a) b) c)

Fig. 3. Extraction of the Grey Level Profiles. Surface normals at each point
are cumputed (panel a) and intensities are extracted from the MRI image
(panel b) along these normals at points uniformly sampled in both outside
and inside areas. An excerpt from a GLP is shown in panel c) where each
horizontal line represents a GLP of one surface point. Intensities from outside
of the shown VB are in the left half, intensities extracted from the inside of
the VB are in the right half of the profiles.

weights b = (b1, . . . , bn) describe the distance from the model

shape. The optimal parametrisation problem is then formulated

as finding the simplest shape that is capable to adequately

describe (encode) the shapes in the dataset with the fewest

modes of variations. More details can be found in [15].

Once the optimal parametrisation of all shapes have been

found, a database of 1D grey level profiles is extracted from

MRI images for each shape at all surface points. The profiles

are extracted along the normal of each point using cubic

BSpline interpolation. This image information is used to drive

the shape deformation during the segmentation procedure.

The validation experiments were performed on the same

databased the models were created on but for each segmented

VB or IVD, its shape and profile were removed from the model

(leave-one-out strategy).

C. Segmentation Algorithm Pipeline

The segmentation procedure consists of several processing

steps that are described in Fig. 2. The spine curve is found

to determine the spine coordinate system, which is needed in

order to place the SSMs into the intial positions before they

are deformed to obtain the final segmentations results. The

successive steps of the process are described in this section
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Fig. 4. Scoring of Sagittal Cross-sections. On the left (panel a) is the graph
of scores of respective sagittal slices, aligned with a lumbar axial slice. The
central cross-section with most of the VBs and IVDs can be determined. The
result of Canny edge detection on the central sagittal slice is shown at panel b)
and the corresponding slice with points of high correlations with the vertebrae
template are shown on the panel c). The green circle identifies the found seed
for spine curve extraction.

(following the chart in Fig. 2).

1) Spine Localisation: Initially, approximate locations of

all visible VBs and IVDs are found. The spine localisation is

performed in several steps. First, we detect a central sagittal

section, ie. the sagittal cross-section passing closest to most

centres of VBs and IVDs (Section a). Second, a 3D spine curve

passing through centres of VBs and IVDs is extracted. This is

achieved by analysing each axial cross-section and finding a

line of axial vertebral symmetry in each slice. The algorithm

was presented by [16] and is described in Section b). Last, the

approximate centres of VBs and IVDs are localised in the 3D

spine curve by analysing the intensity profile along the found

spine curve (Section c).

a) Locate the Central Sagittal Cross-section
The central sagittal cross-section (ie. passing closest to

centres of most vertebral bodies) was identified at first

by correlating the Canny edge detector results on the

extracted sagittal slices with an artificial model of two

adjacent vertebrae and an ellipse-like IVD. The number

of points with the correlation coefficient over a selected

threshold (empirically 0.35) was used to count a score

of each slice. The median of the high score area is then

chosen as the central sagittal cross-section (Fig. 4).

b) Find the 3D Spine Curve
The obtained central sagittal slice is used to initialise

a search for a 3D spine curve described in [16]. The

mean coronal and axial coordinates of points of highest

correlation within the template are used as a seed point.

A line of axial symmetry for each axial cross-section

is found by maximising a similarity measure (mutual

information) and the centre of the VB or IVD is refined

along this line using an operator finding centres of

circular structures [16]. A robust 3D fitting of 3rd degree

polynomials in each coordinate direction is performed to

find the continuous spine curve in three dimensions (see

a) b) c) d)

Fig. 5. Extraction of the 3D Spine Curve. Example axial slices with found
lines of axial symmetry and approximate centres of respective VB or IVD
(green dots) are shown in panel a). The centres are projected into the middle
sagittal cross-section in panel b) and the fitted polynomial spine curve is
shown in panel c). Intensity profile along this curve is extracted (panel d) and
used to find the number of imaged VBs and IVDs and their centres in 3D
(red dots for centres of VBs and green dots for centres of IVDs).

Fig. 5).

c) Analyse the Intensity Profile Along the Curve
The intensity profile along the spine curve is analysed

to find approximate centre positions of the VBs and

IVDs where the shape models for segmentation would

be placed. Points of high gradient, where anatomical

borders are likely to occur, are searched and the obtained

segments are length-analysed to identify either an IVD

(length between 4-15mm) or a VB (15-37mm). Longer

segments are split into regions of VB and IVD following

the same assumptions of average anatomy dimensions.

The ranges are chosen to accommodate a majority of

adult population while clearly distinguishing between an

IVD and a VB An example result is presented in Fig.

5d.

Knowing the approximate positions of VBs and IVDs

centres, their boundaries along the spine curve in 3D and their

axial orientation, we can place the statistical mean shapes from

our SSMs into these locations. The segmentation process is

finalised by deforming these shapes to precisely match the

segmented anatomies. The procedure is describe in the next

section.

2) Shape Base Segmentation: As a result of the SSM

creation, every manual segmentation in the training database

is represented as a 3D triangular mesh with the same number

of points that spatially correspond to each other along the

dataset. Thus, for each manually segmented case, MRI image

intensities (GLPs) along the mesh point normals can be

extracted and saved for all the cases (Fig. 3). The GLPs are

extracted from both the interior and the exterior of the VB

or IVD and centred at the mesh point itself. The length of

the training profiles in this study was 61 points (30 inside

the shape, 30 ouside plus the edge point) with the spacing

of 0.25mm. The database of GLPs (training profiles) from all

the manually segmented cases is used to drive the iterative

deformation process. The statistical mean shape with mesh

points spatially corresponding to mesh points of the manual

segmentations are placed to initial positions (found in previous
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TABLE II
DICE SCORES FOR SEGMENTATION RESULTS

#VBs
Dataset Anatomy or Mean Median StdDev

#IVDs

I VB 11 0.83 0.82 0.03

II VB 30 0.85 0.87 0.08

III VB 27 0.87 0.88 0.05

I IVD 11 0.78 0.79 0.07

II IVD 29 0.76 0.76 0.07

III IVD 26 0.80 0.83 0.07

section).

At each iteration (we used 10 iterations in this study),

the optimal displacement of each shape point is sought after

(Fig 2). First, grey level profiles are extracted along normals

of the current shape. These normals are double the length

of the training profiles. A set of possible displacements is

defined independently for each point along its normal (points

where the grey level profiles were extracted). For each possible

displacements, the normalised cross-correlation of the GLP

around the new position is evaluated against each correspond-

ing training profile in the database. The best match is selected

as the new point position. The overall shape deformation

is then constrained to lie within 3 standard deviations of

the modes of variation of the SSM (the space of allowed

deformations).

IV. RESULTS

The mean shape models and the primary modes of variation

of the VBs and IVDs are shown in Fig. 6. In the case of

the VB from dataset I (Fig. 6, upper left section), the most

important mode of variation explains primarily the variation

in vertical dimension of the VBs. The high variation in the

height of the VBs is partially a consequence of the relatively

large axial slice thickness (5-6mm) and the resulting partial

volume effect. High variations in the SSM of VBs from the

second dataset (Fig. 6 bottom left section) can be observed

in areas of the vertebral pedicles. This variation is partially

due to inconsistency in the manually segmented contours and

partially due to significant differences among the anatomies

of thoracic vertebrae in this area.

The accuracy of the automated segmentation was validated

by computing the Dice score similarity measure (Eq. 3)

between the results of our automated algorithm (volume A)

and the manual segmentations (volume M ):

Dice(A,M) = 2
|A ∩M |
|A|+ |M | (3)

The results are reported in Table II, the segmentation process

is illustrated in Fig. 7 and example segmentation results are

shown in Fig. 8.

As can be seen from the Table II the results for lumbar and

thoracic VB are very good. The slight decrease in the results

in the thoracic and particularly the lumbar IVDs is still being

Fig. 6. Mean shapes (in the middle) and their first mode of variation (-3
StdDev on the left, +3 StdDev on the right) of two VBs (left) and two IVDs
(right). First column corresponds to the first dataset (T1w), second column to
the third dataset (T2w SPACE, thoracic area).

Fig. 7. Example Result Image with Segmented VBs and IVDs. The middle
slice of an example lumbar T2w 3D SPACE image is shown. The mean shapes
(panels a and f) are placed to found initial positions (panels b and e) and
deformed following the process described in Fig. 2. The final segmentation
results are shown on panels c and d.

investigated. One of the observed problems occuring for the

T2w images is the attraction of the IVDs towards the high

gradient edges of the spinal nerves in the spinal cord (Fig. 8,

bottom right).

Imperfections in dataset I are likely due to the partial

voluming effect. Because of the bigger voxel size in the

superior-inferior direction, the interface between a VB and

an IVD is less clearly defined and any single one voxel mis-

alignment in this direction contributes importantly to the Dice

score (especially for the IVDs that are only 3-4 voxels thick)

(see Fig. 8, left column). However, the overall results appear

satisfactory given the level of details captured in images of

such resolution.

V. CONCLUSION

Shape based segmentation has become a widely used strat-

egy to constrain difficult segmentation problems in many MRI-

based studies. Our study shows its potential for automated

spine anatomy segmentation in the thoracic and lumbar regions

when high-resolution MRI data are acquired as well as for

data with larger slice thickness that are commonly used in

current clinical practice. The method can be used on MRI

scans of the thoracic and lumbar spine with different contrast

and acquisition parameters providing a dataset with manual

segmentations is available.

Both quantitative and visual evaluations demonstrate

promising results and usability on most cases, however further

improvements to achieve good results on most images and

more extensive validations on a larger dataset are needed. Our

upcoming aim is to acquire a larger dataset of spine images
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Fig. 8. Example Results from the Three Datasets. The same slices as in Fig.
1 with overlaid segmentation results are presented. Arrows in the bottom-right
slice indicates areas of imprecise segmentation.

to enable generation of more specific models (ie. specialised

model for each vertebra). These models, across all regions of

the spine, will capture individual anatomical variations in more

detail. Additionally, further improvements in the segmentation

results will be undertaken by incorporating multi-shape models

into connected templates of anatomical variations and by

improving the spine localisation by a more robust and generic

spine curve search algorithm. A study showing the sensitivity

of the approach to precise initialisation will also be conducted.
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